Photosynthetic Inorganic Carbon Acquisition in an Acid-tolerant, Free-living Species of Coccomyxa (chlorophyta)(1).
نویسندگان
چکیده
The processes of CO2 acquisition were characterized for the acid-tolerant, free-living chlorophyte alga, CPCC 508. rDNA data indicate an affiliation to the genus Coccomyxa, but distinct from other known members of the genus. The alga grows over a wide range of pH from 3.0 to 9.0. External carbonic anhydrase (CA) was detected in cells grown above pH 5, with the activity increasing marginally from pH 7 to 9, but most of the CA activity was internal. The capacity for HCO3 (-) uptake of cells treated with the CA inhibitor acetazolamide (AZA), was investigated by comparing the calculated rate of uncatalyzed CO2 formation with the rate of photosynthesis. Active bicarbonate transport occurred in cells grown in media above pH 7.0. Monitoring CO2 uptake and O2 evolution by membrane-inlet mass spectrometry demonstrated that air-grown cells reduced the CO2 concentration in the medium to an equilibrium concentration of 15 μM, but AZA-treated cells caused a drop in extracellular CO2 concentration to a compensation concentration of 27 μM at pH 8.0. CO2 -pulsing experiments with cells in the light indicated that the cells do not actively take up CO2 . An internal pool of unfixed inorganic carbon was not detected at the CO2 compensation concentration, probably because of the lack of active CO2 uptake, but was detectable at times before compensation point was reached. These results indicate that this free-living Coccomyxa possesses a CO2 -concentrating mechanism (CCM) due to an active bicarbonate-uptake system, unlike the Coccomyxa sp. occurring in symbiotic association with lichens.
منابع مشابه
Photosynthetic Inorganic Carbon Acquisition in an Acid-tolerant, Free-living Species of Coccomyxa (chlorophyta)
The processes of CO2 acquisition were characterized for the acid-tolerant, free-living chlorophyte alga, CPCC 508. rDNA data indicate an affiliation to the genus Coccomyxa, but distinct from other known members of the genus. The alga grows over a wide range of pH from 3.0 to 9.0. External carbonic anhydrase (CA) was detected in cells grown above pH 5, with the activity increasing marginally fro...
متن کاملEvaluating the Species Boundaries of Green Microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) Using Integrative Taxonomy and DNA Barcoding with Further Implications for the Species Identification in Environmental Samples
Integrative taxonomy is an approach for defining species and genera by taking phylogenetic, morphological, physiological, and ecological data into account. This approach is appropriate for microalgae, where morphological convergence and high levels of morphological plasticity complicate the application of the traditional classification. Although DNA barcode markers are well-established for anim...
متن کاملNitrate and Ammonium Induced Photosynthetic Suppression in N-Limited Selenastrum minutum: II. Effects of NO(3) and NH(4) Addition to CO(2) Efflux in the Light.
The effects of nitrate and ammonium addition on net and gross photosynthesis, CO(2) efflux and the dissolved inorganic carbon compensation point of nitrogen-limited Selenastrum minutum Naeg. Collins (Chlorophyta) were studied. Cultures pulsed with nitrate or ammonium exhibited a marked decrease in both net and gross photosynthetic carbon fixation. During this period of suppression the specific ...
متن کاملSlow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa.
Omphalina basidiolichens are obligate mutualistic associations of a fungus of the genus Omphalina (the exhabitant) and a unicellular green alga of the genus Coccomyxa (the inhabitant). It has been suggested that symbiotic inhabitants have a lower rate of genetic change compared to exhabitants because the latter are more exposed to abiotic environmental variation and competition from other organ...
متن کاملAn Experimental Insight into Extracellular Phosphatases – Differential Induction of Cell-Specific Activity in Green Algae Cultured under Various Phosphorus Conditions
Extracellular phosphatase activity (PA) has been used as an overall indicator of P depletion in lake phytoplankton. However, detailed insights into the mechanisms of PA regulation are still limited, especially in the case of acid phosphatases. The novel substrate ELF97 phosphate allows for tagging PA on single cells in an epifluorescence microscope. This fluorescence-labeled enzyme activity (FL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of phycology
دوره 45 4 شماره
صفحات -
تاریخ انتشار 2009